Python developers can supercharge their workflow with AI-powered code completion, intelligent refactoring, and automated documentation generation.
GitHub Copilot offers the most seamless inline coding experience with lightning-fast suggestions and deep IDE integration.
AI understands Python's dynamic typing and suggests appropriate type hints and completions.
Deep understanding of Django, Flask, FastAPI, and other popular Python frameworks.
Intelligent suggestions for NumPy, Pandas, and machine learning libraries.
Recognizes your project dependencies and suggests appropriate imports.
Get started with GitHub Copilot for Python development in minutes:
See how GitHub Copilot accelerates Python development with AI-powered assistance:
# Create a REST API endpoint for user authentication
from fastapi import FastAPI, HTTPException, Depends
from pydantic import BaseModel
from typing import Optional
app = FastAPI()
class UserLogin(BaseModel):
email: str
password: str
class Token(BaseModel):
access_token: str
token_type: str
@app.post("/auth/login", response_model=Token)
async def login(credentials: UserLogin):
# AI generates authentication logic
user = await authenticate_user(credentials.email, credentials.password)
if not user:
raise HTTPException(status_code=401, detail="Invalid credentials")
token = create_access_token(user.id)
return Token(access_token=token, token_type="bearer")# Clean and transform sales data
import pandas as pd
def process_sales_data(df: pd.DataFrame) -> pd.DataFrame:
# AI suggests data cleaning pipeline
return (df
.dropna(subset=['order_id', 'amount'])
.assign(
date=lambda x: pd.to_datetime(x['date']),
amount=lambda x: x['amount'].astype(float),
category=lambda x: x['category'].str.lower().str.strip()
)
.query('amount > 0')
.sort_values('date', ascending=False)
)Maximize your productivity with GitHub Copilot using these Python-specific tips:
GitHub Copilot excels at these common Python development tasks:
Generate FastAPI/Flask endpoints, request validation, and error handling.
Write Pandas transformations, NumPy operations, and visualization code.
Generate pytest fixtures, test cases, and mocking patterns.
Create file processing, web scraping, and task automation scripts.
Other AI coding tools that work well with Python: